
California
Institute of
Technology

Developing Formal Correctness Properties
from Natural Language Requirements

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA

Allen.P.Nikora@jpl.nasa.gov

The work described in this presentation was carried out at the Jet Propulsion
Laboratory, California Institute of Technology. This work is sponsored by the
National Aeronautics and Space Administration's Independent Verification
and Validation Facility's Research Program. This activity is managed locally
at JPL through the Assurance Technology Program Office (ATPO).

mailto:Allen.P.Nikora@jpl.nasa.gov

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 2

California
Institute of
TechnologyAgenda

Problem/Approach
Relevance to NASA
Potential Applications
Accomplishments and/or Tech Transfer
Potential
Next steps

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 3

California
Institute of
TechnologyProblem/Approach

Goal - transform natural language specifications into formal notation.
Specifically, automate generation of Linear Temporal Logic (LTL)
correctness properties from natural language temporal specifications.
Why?

Model-based techniques becoming more widely accepted
Analytical verification techniques (e.g., model checking, theorem
proving) significantly more effective at detecting types of spec.
design errors (e.g., race conditions, deadlock) than manual
inspection
Many requirements still written in natural language

High learning curve for specification languages, associated
tools
Increased schedule and budget pressure on projects reduce
training opportunities for engineers

Formulation of correctness properties for system models can be a
difficult problem

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 4

California
Institute of
TechnologyProblem/Approach (cont’d)

Develop more accurate classifiers to discriminate between
temporal, non-temporal natural language requirements

Extend results of recently completed CI, reported in
ISSRE20051

Improve probability of detection, reduce false positive rate
Use pattern matching/natural language processing techniques
to map identified natural language temporal requirements to LTL
patterns

Correctness properties can often be specified as LTL
expressions

Extract semantic information to populate LTL pattern
Existing techniques (e.g., “-f” option for SPIN, LTL2BA2) can
transform LTL expression into a “never” clause for model
checkers (e.g., SPIN)

1. A. Nikora, "Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language
Specifications", Proceedings of the 16th International Symposium on Software Reliability Engineering,
Chicago, IL, Nov 8-11, 2005.

2. P. Gastin, D. Oddoux “Fast LTL to Büchi Automata Translation”, CAV'01, LNCS 2102, p. 53-65. Available at
http://www.liafa.jussieu.fr/~oddoux/

Example

Details

http://www.liafa.jussieu.fr/~oddoux/

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 5

California
Institute of
TechnologyProblem/Approach (cont’d)

Schedule of Activities and Deliverables
Year 1

Initial (manual) identification of temporal requirements within requirements
documents of collaborating projects.

These requirements will be used as training sets for the classifiers and
transformation tools developed for this task.
On-going throughout first year as additional collaborating projects
contribute requirements

High-performance specification classifiers (temporal vs. non-temporal
requirements)
Initial specification and design for tool to transform natural language
temporal requirements to LTL expressions
End of first year report

Year 2
Final specification and design for tool to transform natural language
temporal requirements to LTL expressions ; initial tool implementation.
Final toolset for transforming natural language temporal requirements into
LTL expressions
Final Report

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 6

California
Institute of
TechnologyRelevance to NASA

Simplify
development of
formal correctness
properties
More widespread
use of model-based
specification, design
techniques

Earlier identification
of defects
Reduce residual
defect content for
space mission
software systems

⇒

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 7

California
Institute of
TechnologyPotential Applications

Model-based assurance techniques can
Find defects earlier in the development process
Find types of defects that cannot easily be found by
test (e.g., race conditions, deadlocks, lack of progress
cycles/starvation)

Correctness properties
Manual specification of correctness properties can be
difficult
Goal: Automated/assisted transformation of
correctness properties written in natural language will
simplify application of model-based techniques,
encourage greater use

More widespread use of model-based techniques will
result in more reliable flight software.

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 8

California
Institute of
Technology

Accomplishments and/or
Tech Transfer Potential

New task, work just starting
Gathering requirements from collaborating projects – projected data availability
high

Requirements for one project already in hand
Working with additional on-going projects to collect requirements for
analysis

Acquiring relevant classification, natural language processing tools. Several
tools already in hand:

Link Grammar natural language parser
TnT parts-of-speech tagger
Weka
SPIN

Projected Technology Transfer Level:
Year 1 (by June 07): 3 (“Experimental demonstration of critical function &/or
proof of concept”)
Year 2 (by June 08): 4 (“Validation in a lab environment”) on collaborating
flight projects

http://bobo.link.cs.cmu.edu/link/
http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.cs.waikato.ac.nz/ml/weka/
http://spinroot.com/spin/whatispin.html

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 9

California
Institute of
TechnologyNext steps

Focus areas for next year
Develop High Performance Classifiers

Improve ability to discriminate between temporal, non-temporal
requirements

• Try more classifiers – only a subset of classifiers in WEKA
has been applied in previous work

• Add more structural information to requirements being
classified (e.g., parse tree information – part of speech,
level in tree)

• “Bagging” – apply more than one classifier, develop meta-
classifier in which individual components are weighted
according to how well they perform (e.g., pd, pf)

• Direct pattern matching – use natural language
parsing/transformation techniques to match structure of
requirement to LTL pattern

Map Temporal Requirements Structure to LTL Patterns
Populate LTL patterns with semantic information

Work by Jane Malin, JSC, et al. (“Reconciler”) may be
applicable

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 10

California
Institute of
Technology

Discriminating Between Requirement Types
(cont’d)

Machine Learning/Natural Language Processing (cont’d)
Developing input to classifiers

Apply TnT POS tagger to requirement text
Form list of tags – n’th list element corresponds to n’th word in
requirements text
Map each word in requirement to unique numerical ID
Map each POS tag to unique numerical ID
Concatenate requirements text word list, POS tag list

Use only first 200 elements of word list, POS tag list
Apply supervised discretization1

Many classifiers require discrete data input
Created training data sets (252 temporal requirements, 252 nontemporal
requirements) that included the attributes accounting for the first 60%,
80%, and 90% of the classification merit
Other input representations yielded poorer classifiers

Return to Approach

1. U.M. Fayyad, K.B. Irani,. “Multi-Interval Discretization Of Continuous-Valued Attributes For Classification
Learning”, Proc. 13th Int. Joint Conf. AI (IJCAI-93), Chamberry, France, Aug./ Sep. 1993.

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 11

California
Institute of
Technology

Discriminating Between Requirement Types
(cont’d)

Machine Learning/Natural Language
Processing (cont’d)

Five well-performing classifiers
AODE1

RBF Network2 boosted with
AdaBoostM13

Lazy Bayesian Rules (LBR)4

NNGE4, 5

NNGE boosted with AdaBoostM1

Detected as
temporal

Detected as
nontemporal

a b Really
temporal

c d Really
nontemporal

Classifiers evaluated according to four criteria:
pd (probability of detection) - a/(a+b)
pf (probability of false detection, or “false positives”) - c/(c+d)
accuracy - c/(a+c)
precision - (a+d)/(a+b+c+d)

1. G. I. Webb, J. Boughton, Z. Wang, “Not So Naive Bayes: Aggregating One-Dependence Estimators”, Machine Learning, 58(1), pp. 5-24,
2005

2. D.S. Broomhead, D. Lowe, “Multivariate Functional Interpolation And Adaptive Networks”, Complex Systems, 2:321-355, 1988.

3. Y. Freund, R. E. Schapire. "Experiments With A New Boosting Algorithm". Proc International Conference on Machine Learning, Morgan
Kaufmann, San Francisco, 1996.

4. B. Martin, "Instance-Based Learning: Nearest Neighbor With Generalization", Master Thesis, University of Waikato, Hamilton, New Zealand,
1995

5. Z. Zheng, G. Webb, “Lazy Learning Of Bayesian Rules”, Machine Learning, Vol 41, No 1, pp. 53-84, Kluwer Academic Publishers, 2000

Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 12

California
Institute of
Technology

Classifier Performance: Requirements Text
and POS Information

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

5.00% 10.00% 15.00% 20.00% 25.00%

pf

pd

AODE Boosted RBF LBR NNGE Boosted NNGE

Discriminating Between Requirement Types
(cont’d)

Classifier Performance – Requirements Text and POS Information

Better

Worse

Next SlideReturn to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 13

California
Institute of
Technology

Discriminating Between Requirement Types
(cont’d)

Classifier Performance – Requirements Text Only

Classifier Performance: Requirements Text
Information Only

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

5.00% 10.00% 15.00% 20.00% 25.00%

pf

pd

AODE Boosted RBF LBR NNGE Boosted NNGE

Previous SlideReturn to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 14

California
Institute of
Technology

Example
Natural language requirement text

“Electrical interfaces passing through cable cutter
separation devices shall be deadfaced prior to
actuation of the device”

Requirements text parsed with Link Grammar
parser1, 2

Continue Example

(S (NP (NP Electrical interfaces)
(VP passing

(PP through
(NP cable cutter separation devices))))

(VP shall
(VP be

(VP deadfaced
(PP prior to

(NP (NP actuation)
(PP of

(NP the device))))))))

1. D. Sleator, D. Temperley, “Parsing English with a Link Grammar”, Third International Workshop on
Parsing Technologies, 1993

2. Link Grammar, http://bobo.link.cs.cmu.edu/link/

Return to Approach

http://bobo.link.cs.cmu.edu/link/

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 15

California
Institute of
TechnologyExample (cont’d)

Matching LTL Pattern (patterns developed at KSU
CIS Dep’t1)

S precedes P:
(*) Globally !P W S
(*) Before R <>R -> (!P U (S | R))
(*) After Q []!Q | <>(Q & (!P W S))
(*) Between Q and R []((Q & !R & <>R) -> (!P U (S | R)))

(*) After Q until R [](Q & !R -> (!P W (S | R)))

Where “W” represents the “weak until operator” and “U” represents the
“strong until operator”, which are related as shown below:

p W q = ([]p) | (p U q)
= <>(!p) -> (p U q)
= p U (q | []p)

Continue ExampleReturn to Approach

1. Kansas State University CIS Department, Laboratory for Specification, Analysis, and
Transformation of Software (SanToS Laboratory), Specification Patterns Project,
http://patterns.projects.cis.ksu.edu/

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 16

California
Institute of
TechnologyExample (cont’d)

Extract semantic information
Event “P” represented by noun phrase “(NP (NP
actuation) (PP of (NP the device)))”
Event “S” represented by clause “(S (NP (NP
Electrical interfaces) (VP passing (PP through (NP
cable cutter separation devices)))) (VP shall (VP
be (VP deadfaced))))”.
Corresponding LTL specification

!cable_cut W deactive_electrical_interface
Equivalent to: <>(cut_cable) -> (!cut_cable U
deactivate_electrical_interface)

Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 17

California
Institute of
TechnologyLinear Temporal Logic

Linear Temporal Logic (LTL) is a way of reasoning about
a system’s desired properties

p is invariantly true
eventually p becomes invariantly true
p always implies not q
p always implies eventually not q

Interesting in model checking context because an LTL
expression corresponds to an automaton that can become
part of the model being checked
Introduced by Amir Pneuli in late 1970s
Based on “tense logics” developed in 1950s

Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 18

California
Institute of
TechnologyLinear Temporal Logic (cont’d)

LTL can specify both safety and liveness
properties
LTL is propositional logic plus following
temporal operators:

[]p: always p
<>q: eventually q
p U q: p until q

Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 19

California
Institute of
TechnologyLinear Temporal Logic (cont’d)

Common LTL Expressions

[] p always p invariance
<> p eventually p guarantee
p -> <> q p implies eventually

q
response

p->q U r p implies q until r precedence
[] <> p always eventually p recurrence (progress)
<> [] p eventually always p stability (non-progress)
<> p -> <> q eventually p implies

eventually q
correlation

Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 20

California
Institute of
TechnologyLinear Temporal Logic (cont’d)

Common LTL Rules
![]p ⇔ <>!p
!<>p ⇔ []!p
!(p W q) ⇔ (!q) U (!p ⋀ !q)
!(p U q) ⇔ (!q) W (!p ⋀ !q)
[] (p ⋀ q) ⇔ []p ⋀ []q
<> (p ⋁ q) ⇔ <>p ⋁ <>q
p U (q ⋁ r) ⇔ (p U q) ⋁ (p U r)
(p ⋀ q) U r ⇔ (p U r) ⋀ (q U r)
p W (q ⋁ r) ⇔ (p W q) ⋁ (p W r)
(p ⋀ q) W r ⇔ (p W r) ⋀ (q W r)
[] <> (p ⋁ q) ⇔ []<>p ⋁ []<>q
<> [] (p ⋀ q) ⇔ <>[]p ⋀ <>[]q Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 21

California
Institute of
TechnologyLinear Temporal Logic (cont’d)

Relationship between never claims and LTL
Desired property can be expressed as an LTL
formula.

Requirement: “The electrical interfaces
between the probe and the orbiter shall be
deadfaced prior to activation of the cable
cutting device”
Corresponding LTL formula: “Not p until s”,
written as “!p U s”

• “p”: activation of cable cutting device
• “s” deadfacing of electrical interfaces

LTL formula is then negated (the negated property
should NEVER occur)

Example: “!(!p U s)”
Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 22

California
Institute of
TechnologyLinear Temporal Logic (cont’d)

Relationship between never claims and LTL (cont’d)
Negated formula can then automatically be converted to a never
claim using one of the spin execution options
Example – produce never claim to see if property “not p until s” can
be violated by a model

spin –f ‘!(!p U s)’ [> text file]

never { /* !(!p U s) */
accept_init:
T0_init:

if
:: (! ((s))) -> goto T0_init
:: (! ((s)) && (p)) -> goto accept_all
fi;

accept_all:
skip

} Return to Approach

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 23

California
Institute of
TechnologyPropositional Logic Operators

Unary
!: negation

Binary
&&: logical and
||: logical or
->: logical implication
<->: logical equivalence

Return to Linear Temporal Logic

20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 24

California
Institute of
TechnologyStrong vs. Weak Until

Weak until (p W q)
A state si satisfies p W q iff

si satisfies q, or si satisfies p and si+1 satisfies (p W
q)
Formally: si⊨p W q iff si⊨q ∨ (si⊨p ∧ si+1⊨(p W q))
Never actually requires q to become true

Strong until (p U q)
A state si satisfies p U q iff

For some value of j, j >= 1, sj satisfies q, and for all
values of k, i <= k < j, sk satisfies p
Formally: si⊨p U q iff∃j,(j >= i): sj⊨f and ∀k,(i <= k
< j): sk⊨p
Requires that q eventually become true

Return to Linear Temporal Logic

	Developing Formal Correctness Properties from Natural Language Requirements
	Agenda
	Problem/Approach
	Problem/Approach (cont’d)
	Problem/Approach (cont’d)
	Relevance to NASA
	Potential Applications
	Accomplishments and/or�Tech Transfer Potential
	Next steps
	Discriminating Between Requirement Types (cont’d)
	Discriminating Between Requirement Types (cont’d)
	Discriminating Between Requirement Types (cont’d)
	Discriminating Between Requirement Types (cont’d)
	Example
	Example (cont’d)
	Example (cont’d)
	Linear Temporal Logic
	Linear Temporal Logic (cont’d)
	Linear Temporal Logic (cont’d)
	Linear Temporal Logic (cont’d)
	Linear Temporal Logic (cont’d)
	Linear Temporal Logic (cont’d)
	Propositional Logic Operators
	Strong vs. Weak Until

